Energies (Sep 2023)

Downsizing Sustainable Aviation Fuel Production with Additive Manufacturing—An Experimental Study on a 3D printed Reactor for Fischer-Tropsch Synthesis

  • David F. Metzger,
  • Christoph Klahn,
  • Roland Dittmeyer

DOI
https://doi.org/10.3390/en16196798
Journal volume & issue
Vol. 16, no. 19
p. 6798

Abstract

Read online

Sustainable aviation fuels (SAF) are needed in large quantities to reduce the negative impact of flying on the climate. So-called power-to-liquid (PtL) plants can produce SAF from renewable electricity, water, and carbon dioxide. Reactors for these processes that are suitable for flexible operation are difficult to manufacture. Metal 3D printing, also known as additive manufacturing (AM), enables the fabrication of process equipment, such as chemical reactors, with highly optimized functions. In this publication, we present an AM reactor design and conduct experiments for Fischer-Tropsch synthesis (FTS) under challenging conditions. The design includes heating, cooling, and sensing, among others, and can be easily fabricated without welding. We confirm that our reactor has excellent temperature control and high productivity of FTS products up to 800 kgC5+ mcat−3 h−1 (mass flow rate of hydrocarbons, liquid or solid at ambient conditions, per catalyst volume). The typical space-time yield for conventional multi-tubular Fischer-Tropsch reactors is ~100 kgC5+ mcat−3 h−1. The increased productivity is achieved by designing reactor structures in which the channels for catalyst and cooling/heating fluid are in the millimeter range. With the effective control of heat release, we observe neither the formation of hot spots nor catalyst deactivation.

Keywords