Human Vaccines & Immunotherapeutics (Nov 2022)

MicroRNA-873-5p suppresses cell malignant behaviors of thyroid cancer via targeting CXCL5 and regulating P53 pathway

  • Wang Chang,
  • Qing Chang,
  • Haodong Lu,
  • Shiguang Liu,
  • Yanbing Li,
  • Chunyou Chen

DOI
https://doi.org/10.1080/21645515.2022.2065837
Journal volume & issue
Vol. 18, no. 5

Abstract

Read online

We aimed to examine the roles of microRNA-873-5p and CXCL5 in thyroid cancer (TC) cells. qRT-PCR was adopted to measure the expression levels of CXCL5 mRNA and microRNA-873-5p in TC cells, and western blot was adopted to evaluate the CXCL5 protein expression level. Bioinformatics analysis was done to predict the upstream gene of CXCL5. Dual-luciferase assay was applied to validate the binding relationship of CXCL5 and the upstream regulatory gene. Cell experiments were done to detect the effects of microRNA-873-5p targeting CXCL5 on malignant progression of cancer cells. Western blot was adopted to demonstrate the phosphorylation level of P53 pathway related-proteins. CXCL5 was upregulated in TC cells and tissues. The results of in vitro assays displayed that CXCL5 downregulation dramatically suppressed the malignant behaviors of TC cells. MicroRNA-873-5p suppressed CXCL5 expression, but the suppressive effect of microRNA-873-5p on TC cells was abolished through CXCL5 overexpression. Additionally, microRNA-873-5p could mediate p53 pathway and thereby inhibit the malignant behaviors of TC cells through targeting CXCL5. In summary, we proved that microRNA-873-5p repressed the malignant behaviors of TC cells through targeting CXCL5 and P53 pathway, indicating that microRNA-873-5p can be a biomarker for TC.

Keywords