Frontiers in Genetics (Dec 2023)

Comparative miRNA expression profile analysis of porcine ovarian follicles: new insights into the initiation mechanism of follicular atresia

  • Jingge Liu,
  • Caibo Ning,
  • Jinbi Zhang,
  • Shiyong Xu,
  • Jiege Wu,
  • Chenyu Tao,
  • Fanhua Ma,
  • Qing Chen,
  • Zengxiang Pan

DOI
https://doi.org/10.3389/fgene.2023.1338411
Journal volume & issue
Vol. 14

Abstract

Read online

Follicular atresia occurs in every stage of ovarian development, which is relevant to female fertility. In the past decade, increasing studies have confirmed that miRNAs, a class of short non-coding RNAs, play an important role in follicular atresia by post-transcription regulation of their target genes. However, the function of miRNAs on follicular atresia initiation is unknown. In the present study, high-throughput small RNA sequencing was performed to analyze differential miRNA expression profiles between healthy (HF) follicles and early atretic (EAF) follicles. A total of 237 conserved miRNA were detected, and the miR-143 is the highest expressed in follicles. Meanwhile, we also found wide sequence variations (isomiRs) in porcine ovarian miRNA, including in 5′un-translation region, core seed sequences and 3′untranslation region. Furthermore, we identified 22 differentially expressed miRNAs in EAF groups compared to HF group, of which 3 miRNAs were upregulated, as well as 19 miRNAs were downregulated, and then the RT-PCR was performed to validate these profiles. The target genes of these differentially expressed miRNAs were predicted by using miRwalk, miRDB, and Targetscan database, respectively. Moreover, the gene ontology and KEGG pathway enrichment established that the regulating functions and signaling pathways of these miRNAs contribute to follicular atresia initiation and cell fate. In conclusion, this study provides new insights into the changes of miRNAs in early atretic follicles to demonstrate their molecular regulation in ovarian follicular atretic initiation.

Keywords