Arid Zone Journal of Engineering, Technology and Environment (Dec 2017)
Artificial Neural Network Modelling of the Energy Content of Municipal Solid Wastes in Northern Nigeria
Abstract
The study presents an application of the artificial neural network model using the back propagation learning algorithm to predict the actual calorific value of the municipal solid waste in major cities of the northern part of Nigeria, with high population densities and intense industrial activities. These cities are: Kano, Damaturu, Dutse, Bauchi, Birnin Kebbi, Gusau, Maiduguri, Katsina and Sokoto. Experimental data of the energy content and the physical characterization of the municipal solid waste serve as the input parameter in nature of wood, grass, metal, plastic, food remnants, leaves, glass and paper. Comparative studies were made by using the developed model, the experimental results and a correlation which was earlier developed by the authors to predict the energy content. While predicting the actual calorific value, the maximum error was 0.94% for the artificial neural network model and 5.20% by the statistical correlation. The network with eight neurons and an R2 = 0.96881 in the hidden layer results in a stable and optimum network. This study showed that the artificial neural network approach could successfully be used for energy content predictions from the municipal solid wastes in Northern Nigeria and other areas of similar waste stream and composition.