Heliyon (Feb 2022)

Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge

  • Onyedikachi Ubani,
  • Harrison I. Atagana,
  • Ramganesh Selvarajan,
  • Henry JO. Ogola

Journal volume & issue
Vol. 8, no. 2
p. e08945

Abstract

Read online

The present study aimed to characterize the bacterial community and functional diversity in co-composting microcosms of crude oil waste sludge amended with different animal manures, and to evaluate the scope for biostimulation based in situ bioremediation. Gas chromatography–mass spectrometry (GC–MS) analyses revealed enhanced attenuation (>90%) of the total polyaromatic hydrocarbons (PAHs); the manure amendments significantly enhancing (up to 30%) the degradation of high molecular weight (HMW) PAHs. Microbial community analysis showed the dominance (>99% of total sequences) of sequences affiliated to phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The core genera enriched were related to hydrocarbon metabolism (Pseudomonas, Delftia, Methylobacterium, Dietzia, Bacillus, Propionibacterium, Bradyrhizobium, Streptomyces, Achromobacter, Microbacterium and Sphingomonas). However, manure-treated samples exhibited high number and heterogeneity of unique operational taxonomic units (OTUs) with enrichment of additional hydrocarbon-degrading bacterial taxa (Proteiniphilum, unclassified Micrococcales, unclassified Lachnospiraceae, Sphingobium and Stenotrophomonas). Thirty-three culturable hydrocarbon-degrading microbes were isolated from the co-composting microcosms and mainly classified into Burkholderia, Sanguibacter, Pseudomonas, Bacillus, Rhodococcus, Lysinibacillus, Microbacterium, Brevibacterium, Geobacillus, Micrococcus, Arthrobacter, Cellulimicrobacterium, Streptomyces Dietzia,etc,. that was additionally affirmed with the presence of catechol 2,3-dioxygenase gene. Finally, enhanced in situ degradation of total (49%), LMW (>75%) and HMW PAHs (>35%) was achieved with an enriched bacterial consortium of these microbes. Overall, these findings suggests that co-composting treatment of crude oil sludge with animal manures selects for intrinsically diverse bacterial community, that could be a driving force behind accelerated bioremediation, and can be exploited for engineered remediation processes.

Keywords