Energy Science & Engineering (Sep 2023)
SOH estimation and RUL prediction of lithium batteries based on multidomain feature fusion and CatBoost model
Abstract
Abstract In this paper, a lithium‐ion battery State of Health (SOH) estimation algorithm is proposed based on the fusion of multidomain features and the application of a CatBoost model. The aim is to address the issue of low prediction accuracy in SOH caused by the utilization of single‐feature extraction techniques. The algorithm encompasses the extraction of various features from the original charge–discharge data, including time‐domain, frequency‐domain, entropy, and time‐series features. Following the evaluation of feature importance, a feature selection process is conducted to eliminate redundant features that provide a limited contribution to the predictive results. Subsequently, a multiple‐set discriminative correlation analysis is employed to integrate high‐dimensional features. To attain accurate predictions, the CatBoost model is further optimized through the utilization of a sparrow search algorithm. Experimental results demonstrate that the proposed algorithm achieves accurate SOH estimations within individual batteries, as evidenced by mean square error values consistently below 4e−4 and goodness‐of‐fit values exceeding or equal to 0.98. Additionally, the algorithm exhibits reliable prediction capabilities across different batteries operating under the same charge/discharge strategy. Comparative analysis indicates that the adoption of the multidomain feature fusion approach yields improved prediction accuracy in contrast to the utilization of a single feature extraction method.
Keywords