Next Materials (Jan 2024)

Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress

  • Sanny Verma,
  • Bineyam Mezgebe,
  • Charifa A. Hejase,
  • Endalkachew Sahle-Demessie,
  • Mallikarjuna N. Nadagouda

Journal volume & issue
Vol. 2
p. 100077

Abstract

Read online

Per- and polyfluoroalkyl substances (PFAS) are oxidatively recalcitrant organic synthetic compounds. PFAS are an exceptional group of chemicals that have significant physical characteristics due to the presence of the most electronegative element (i.e., fluorine). PFAS persist in the environment, bioaccumulate, and have been linked to toxicological impacts. Epidemiological and toxicity studies have shown that PFAS pose environmental and health risks, requiring their complete elimination from the environment. Various separation technologies, including adsorption with activated carbon or ion exchange resin; nanofiltration; reverse osmosis; and destruction methods (e.g., sonolysis, thermally induced reduction, and photocatalytic dissociation) have been evaluated to remove PFAS from drinking water supplies. In this review, we will comprehensively summarize previous reports on the photodegradation of PFAS with a special focus on photocatalysis. Additionally, challenges associated with these approaches along with perspectives on the state-of-the-art approaches will be discussed. Finally, the photocatalytic defluorination mechanism of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) following complete mineralization will also be examined in detail.

Keywords