Axioms (Jul 2024)
A Reduced-Dimension Weighted Explicit Finite Difference Method Based on the Proper Orthogonal Decomposition Technique for the Space-Fractional Diffusion Equation
Abstract
A kind of reduced-dimension method based on a weighted explicit finite difference scheme and the proper orthogonal decomposition (POD) technique for diffusion equations with Riemann–Liouville fractional derivatives in space are discussed. The constructed approximation method written in matrix form can not only ensure a sufficient accuracy order but also reduce the degrees of freedom, decrease storage requirements, and accelerate the computation rate. Uniqueness, stabilization, and error estimation are demonstrated by matrix analysis. The procedural steps of the POD algorithm, which reduces dimensionality, are outlined. Numerical simulations to assess the viability and effectiveness of the reduced-dimension weighted explicit finite difference method are given. A comparison between the reduced-dimension method and the classical weighted explicit finite difference scheme is presented, including the error in the L2 norm, the accuracy order, and the CPU time.
Keywords