BJA Open (Mar 2023)
EEG responses to standardised noxious stimulation during clinical anaesthesia: a pilot study
Abstract
Background: During clinical anaesthesia, the administration of analgesics mostly relies on empirical knowledge and observation of the patient's reactions to noxious stimuli. Previous studies in healthy volunteers under controlled conditions revealed EEG activity in response to standardised nociceptive stimuli even at high doses of remifentanil and propofol. This pilot study aims to investigate the feasibility of using these standardised nociceptive stimuli in routine clinical practice. Methods: We studied 17 patients undergoing orthopaedic trauma surgery under general anaesthesia. We evaluated if the EEG could track standardised noxious phase-locked electrical stimulation and tetanic stimulation, a time-locked surrogate for incisional pain, before, during, and after the induction of general anaesthesia. Subsequently, we analysed the effect of tetanic stimulation on the surgical pleth index as a peripheral, vegetative, nociceptive marker. Results: We found that the phase-locked evoked potentials after noxious electrical stimulation vanished after the administration of propofol, but not at low concentrations of remifentanil. After noxious tetanic stimulation under general anaesthesia, there were no consistent spectral changes in the EEG, but the vegetative response in the surgical pleth index was statistically significant (Hedges' g effect size 0.32 [95% confidence interval 0.12–0.77], P=0.035). Conclusion: Our standardised nociceptive stimuli are not optimised for obtaining consistent EEG responses in patients during clinical anaesthesia. To validate and sufficiently reproduce EEG-based standardised stimulation as a marker for nociception in clinical anaesthesia, other pain models or stimulation settings might be required to transfer preclinical studies into clinical practice. Clinical trial registration: DRKS00017829.