Buildings (Feb 2022)

Development of an Artificial Intelligence Model to Recognise Construction Waste by Applying Image Data Augmentation and Transfer Learning

  • Seunguk Na,
  • Seokjae Heo,
  • Sehee Han,
  • Yoonsoo Shin,
  • Myeunghun Lee

DOI
https://doi.org/10.3390/buildings12020175
Journal volume & issue
Vol. 12, no. 2
p. 175

Abstract

Read online

The demand for categorising technology that requires minimum manpower and equipment is increasing because a large amount of waste is produced during the demolition and remodelling of a structure. Considering the latest trend, applying an artificial intelligence (AI) model for automatic categorisation is the most efficient method. However, it is difficult to apply this technology because research has only focused on general domestic waste. Thus, in this study, we delineate the process for developing an AI model that differentiates between various types of construction waste. Particularly, solutions for solving difficulties in collecting learning data, which is common in AI research in special fields, were also considered. To quantitatively increase the amount of learning data, the Fréchet Inception Distance method was used to increase the amount of learning data by two to three times through augmentation to an appropriate level, thus checking the improvement in the performance of the AI model.

Keywords