Physical Review Special Topics. Accelerators and Beams (Feb 2011)

Overview on superconducting photoinjectors

  • A. Arnold,
  • J. Teichert

DOI
https://doi.org/10.1103/PhysRevSTAB.14.024801
Journal volume & issue
Vol. 14, no. 2
p. 024801

Abstract

Read online Read online

The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1 μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.