Symbiont modulates expression of specific gene categories in Angomonas deanei

Memórias do Instituto Oswaldo Cruz.. (0) DOI 10.1590/0074-02760160228


Journal Homepage

Journal Title: Memórias do Instituto Oswaldo Cruz.

ISSN: 0074-0276 (Print); 1678-8060 (Online)

Publisher: Instituto Oswaldo Cruz, Ministério da Saúde

Society/Institution: Instituto Oswaldo Cruz, Ministério da Saúde

LCC Subject Category: Medicine: Internal medicine: Special situations and conditions: Arctic medicine. Tropical medicine | Science: Microbiology

Country of publisher: Brazil

Language of fulltext: English

Full-text formats available: PDF, HTML, XML



Luciana Loureiro Penha

Luísa Hoffmann

Silvanna Sant’Anna de Souza

Allan Cézar de Azevedo Martins

Thayane Bottaro

Francisco Prosdocimi

Débora Souza Faffe

Maria Cristina Machado Motta

Turán Péter Ürményi

Rosane Silva


Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 16 weeks


Abstract | Full Text

Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type) and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.