International Journal of Horticultural Science (May 1999)

The effect of modified bacterial virulence to host-pathogen relationship (Phaseolus vulgaris L. Pseudomonas savastanoi pv. phaseolicola)

  • A. Végvári,
  • M. Hevesi,
  • É. Sárdi,
  • J. Szarka,
  • I. Velich

DOI
https://doi.org/10.31421/IJHS/5/1-2/23
Journal volume & issue
Vol. 5, no. 1-2

Abstract

Read online

The Pseudomonas savastanoi pv. phaseolicola is one of the most expressive biogen stressors of the bean (Phaseolus vulgaris L.) in Hungary. The chemical and agrotechnological defence is inefficient, so breeding is the only workable way. The conventional cultivars are susceptible to PS while most of the new industrial varieties have genetic resistance to the pathogen. The genetic background of resistance is, however, a complex system in the bean. Leaf resistance is a monogenic system, but this gene is not expressed in juvenile stage of the host. The pathogen species can be divided into different races. After inoculation with virulent strains, typical symptoms appeared on the leaves. To understand the details of host-pathogen relationships, there were carried out experiments using bacterial strains with altered virulence. Six transposon mutants of the PS were tested. Our main objective was to test these modified bacterial strains on bean cultivars of known genetic background. First we analysed the symptoms, and then the correlation between the symptoms and the multiplication of mutant bacteria. Three cultivars (Cherokee, Inka and Főnix) were tested. The infection by the virulent PS isolate produced typical symptoms on the three cultivars tested. Mutant bacteria (except strain 756) did not cause any significant symptoms on the hosts. The mutant 756 induced visible symptoms on the cultivars Cherokee and Inka. On Cherokee there were small watersoaked lesions, and HR (hypersensitivity reaction) was detected on Inka, but this was restricted to some cells only (mikro HR). The rate of multiplication of the wild type strain was much higher than the multiplication of the mutants. Bacteria were detected in the cotyledons and primordial leaf, but there is not any substantial number of bacteria in leaves, except for strains 757, 1212 and 1213. The rate of multiplication of strain 756 was intermediate. These, and other experiments can help to understand the genetic background of resistance and the host-pathogen relationship in the Pseudomonas-bean pathosystem.

Keywords