ESPOCH Congresses (Aug 2021)

Obtention of Antimicrobial Fibers Type Core/Shell Pla/Pvoh-Lae By Coaxial Electrospinning

  • C. Patiño Vidal,
  • E. Velásquez,
  • M.J. Galotto,
  • C. López de Dicastillo

DOI
https://doi.org/10.18502/espoch.v1i1.9562
Journal volume & issue
Vol. 1, no. 1
pp. 283 – 293

Abstract

Read online

Abstract Coaxial electrospinning (EC) is a technology that allows the encapsulation of active compounds, such as ethyl lauroyl arginate (LAE), in shell/core structures, in order to develop new antimicrobial materials for food packaging that slow down the release of active compounds and extend the food's shelf life. For this reason, the objective of this study was to develop antimicrobial fibers shell/core type by EC. Two polymers with different hydrophilic character, polylactic acid (PLA) for the shell and polyvinyl alcohol (PVOH) and LAE for the core, were used to obtain PLA/PVOH-LAE fibers and slow the release of the antimicrobial compound. The morphology of fibers was evaluated by optical microscopy and their thermal properties through thermogravimetric analyses (TGA). LAE release studies were carried out in a fatty food simulant (ETOH 95%), and was compared with the minimum inhibitory concentration (MIC) values of LAE against a gram-positive bacteria, Listeria innnocua. The optical micrographs showed the obtaining of the shell/core structure with an average diameter of approximately 0.6 µm, and the TGA analyses demonstrated the thermal protection of LAE by the shell of the fibers. Released LAE reached the equilibrium state in ETOH 95% during the first 3 hours, maintaining a higher concentration than the MIC value obtained in L. innnocua (10 ppm). The results demonstrate that new packaging materials with antimicrobial activity such as PLA/PVOH-LAE polymeric fibers with a shell/core structure can be obtained through the coaxial electrospinning technique.

Keywords