Earth System Science Data (May 2023)

A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021

  • J.-H. Li,
  • J.-H. Li,
  • J.-H. Li,
  • Z.-L. Li,
  • Z.-L. Li,
  • X. Liu,
  • S.-B. Duan

DOI
https://doi.org/10.5194/essd-15-2189-2023
Journal volume & issue
Vol. 15
pp. 2189 – 2212

Abstract

Read online

Land surface temperature (LST) is a key variable for monitoring and evaluating global long-term climate change. However, existing satellite-based twice-daily LST products only date back to 2000, which makes it difficult to obtain robust long-term temperature variations. In this study, we developed the first global historical twice-daily LST dataset (GT-LST), with a spatial resolution of 0.05∘, using Advanced Very High Resolution Radiometer (AVHRR) Level-1b Global Area Coverage (GAC) data from 1981 to 2021. The GT-LST product was generated using four main processes: (1) GAC data reading, calibration, and preprocessing using open-source Python libraries; (2) cloud detection using the AVHRR-Phase I algorithm; (3) land surface emissivity estimation using an improved method considering annual land cover changes; (4) LST retrieval based on a nonlinear generalized split-window algorithm. Validation with in situ measurements from Surface Radiation Budget (SURFRAD) sites and Baseline Surface Radiation Network sites showed that the overall root-mean-square errors (RMSEs) of GT-LST varied from 1.6 to 4.0 K, and nighttime LSTs were typically better than daytime LSTs. Intercomparison with the Moderate Resolution Imaging Spectroradiometer LST products (MYD11A1 and MYD21A1) revealed that the overall root-mean-square difference (RMSD) was approximately 3.0 K. Compared with MYD11A1 LST, GT-LST was overestimated, and relatively large RMSDs were obtained during the daytime, spring, and summer, whereas the significantly smaller positive bias was obtained between GT-LST and MYD21A1 LST. Furthermore, we compared our newly generated dataset with a global AVHRR daytime LST product at the selected measurements of SURFRAD sites (i.e., measurements of these two satellite datasets were valid), which revealed similar accuracies for the two datasets. However, GT-LST can additionally provide nighttime LST, which can be combined with daytime observations estimating relatively accurate monthly mean LST, with an RMSE of 2.7 K. Finally, we compared GT-LST with a regional twice-daily AVHRR LST product over continental Africa in different seasons, with RMSDs ranging from 2.1 to 4.3 K. Considering these advantages, the proposed dataset provides a better data source for a range of research applications. GT-LST is freely available at https://doi.org/10.5281/zenodo.7113080 (1981–2000) (Li et al., 2022a), https://doi.org/10.5281/zenodo.7134158 (2001–2005) (Li et al., 2022b), and https://doi.org/10.5281/zenodo.7813607 (2006–2021) (J. H. Li et al., 2023).