Applied Sciences (Sep 2024)
EAAnet: Efficient Attention and Aggregation Network for Crowd Person Detection
Abstract
With the frequent occurrence of natural disasters and the acceleration of urbanization, it is necessary to carry out efficient evacuation, especially when earthquakes, fires, terrorist attacks, and other serious threats occur. However, due to factors such as small targets, complex posture, occlusion, and dense distribution, the current mainstream algorithms still have problems such as low precision and poor real-time performance in crowd person detection. Therefore, this paper proposes EAAnet, a crowd person detection algorithm. It is based on YOLOv5, with CBAM (Convolutional Block Attention Module) introduced into the backbone, BiFPN (Bidirectional Feature Pyramid Network) introduced into the neck, and combined with a loss function of CIoU_Loss to better predict the person number. The experimental results show that compared with other mainstream detection algorithms, EAAnet has achieved significant improvement in precision and real-time performance. The precision value of all categories was 78.6%, which was increased by 1.8. Among these, the categories of riders and partially visible person were increased by 4.6 and 0.8, respectively. At the same time, the parameter number of EAAnet is only 7.1M, with a calculation amount of 16.0G FLOPs. Therefore, it is proved that EAAnet has the ability of the efficient real-time detection of the crowd person and is feasible in the field of emergency management.
Keywords