Bioinspired Lipase Immobilized Membrane for Improving Hesperidin Lipophilization
Shanxiu Ming,
Shuyi Li,
Zhe Chen,
Xujun Chen,
Feifei Wang,
Shaonan Deng,
Krystian Marszałek,
Zhenzhou Zhu,
Wenxiang Zhang,
Francisco J. Barba
Affiliations
Shanxiu Ming
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Shuyi Li
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Zhe Chen
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Xujun Chen
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Feifei Wang
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Shaonan Deng
Hubei Nanbai Shengtainongye Co., Ltd., Enshi 445000, China
Krystian Marszałek
Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
Zhenzhou Zhu
National R&D Center for Se-Rich Agricultural Products Processing Technology, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430205, China
Wenxiang Zhang
Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Riyadh 11543, Saudi Arabia
Francisco J. Barba
Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
Lipophilization is a promising way to improve the bioavailability of flavonoids. However, the traditional enzymatic esterification methods are time-consuming, and present low yields and purity. Herein, a novel membrane-based lipophilization technology—bioinspired lipase immobilized membranes (BLIMs), including CAL-B@PES, CAL-B@PDA/PES and GA/CAL-B@PDA/PES— were fabricated to improve the antioxidant flavanone glycoside hesperidin lipophilization. Via reverse filtration, PDA coating and GA crosslinking, Candida antarctica lipase B (CAL-B) was stably immobilized on membrane to fabricate BLIMs. Among the three BLIMs, GA/CAL-B@PDA/PES had the greatest enzyme activity and enzyme loading, the strongest tolerance of changes in external environmental conditions (temperatures, pH, heating time, storage time and numbers of cycles) and the highest hesperidin esterification efficiency. Moreover, the optimal operating condition for GA/CAL-B@PDA/PES fabrication was the CAL-B concentration of 0.36 mg/mL, operation pressure of 2 bar, GA concentration of 5% and crosslinking time of 1 h. Afterwards, the hesperidin esterification process did not affect the micromorphology of BLIM, but clearly improved the BLIM permeability and esterified product efficiency. The present study reveals the fabrication mechanism of BLIMs and offers insights into the optimizing strategy that governs the membrane-based lipophilization technology process.