PLoS ONE (Jan 2020)

Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells.

  • J L Carvalho,
  • M Miranda,
  • A K Fialho,
  • H Castro-Faria-Neto,
  • E Anatriello,
  • A C Keller,
  • F Aimbire

DOI
https://doi.org/10.1371/journal.pone.0225560
Journal volume & issue
Vol. 15, no. 4
p. e0225560

Abstract

Read online

COPD is a prevalent lung disease with significant impacts on public health. Affected airways exhibit pulmonary neutrophilia and consequent secretion of pro-inflammatory cytokines and proteases, which result in lung emphysema. Probiotics act as nonspecific modulators of the innate immune system that improve several inflammatory responses. To investigate the effect of Lactobacillus rhamnosus (Lr) on cigarette smoke (CS)-induced COPD C57Bl/6 mice were treated with Lr during the week before COPD induction and three times/week until euthanasia. For in vitro assays, murine bronchial epithelial cells as well as human bronchial epithelial cells exposed to cigarette smoke extract during 24 hours were treated with Lr 1 hour before CSE addition. Lr treatment attenuated the inflammatory response both in the airways and lung parenchyma, reducing inflammatory cells infiltration and the production of pro-inflammatory cytokines and chemokines. Also, Lr-treated mice presented with lower metalloproteases in lung tissue and lung remodeling. In parallel to the reduction in the expression of TLR2, TLR4, TLR9, STAT3, and NF-κB in lung tissue, Lr increased the levels of IL-10 as well as SOCS3 and TIMP1/2, indicating the induction of an anti-inflammatory environment. Similarly, murine bronchial epithelial cells as well as human bronchial epithelial cells (BEAS) exposed to CSE produced pro-inflammatory cytokines and chemokines, which were inhibited by Lr treatment in association with the production of anti-inflammatory molecules. Moreover, the presence of Lr also modulated the expression of COPD-associated transcription found into BALF of COPD mice group, i.e., Lr downregulated expression of NF-κB and STAT3, and inversely upregulated increased expression of SOCS3. Thus, our findings indicate that Lr modulates the balance between pro- and anti-inflammatory cytokines in human bronchial epithelial cells upon CS exposure and it can be a useful tool to improve the lung inflammatory response associated with COPD.