Communications Physics (Jul 2024)
Constraining ultralight dark matter through an accelerated resonant search
Abstract
Abstract Typical weak signal search experiments rely on resonant effects, where the resonance frequency is scanned over a broad range, resulting in significant time consumption. In this study, we demonstrate an accelerated strategy that surpasses the typical resonance-bandwidth limited scan step without compromising sensitivity. We apply this method to an alkali-noble-gas spin system, achieving an approximately 30-fold increase in scanning step size. Additionally, we obtain an ultrahigh sensitivity of 1.29 fT ⋅ Hz−1/2 at around 5 Hz, corresponding to an energy resolution of approximately 1.8 × 10−23eV ⋅ Hz−1/2, which is among the highest quantum energy resolutions reported. Furthermore, we use this sensor to search for axion-like particles, setting stringent constraints on axion-like particles (ALPs) in the 4.5–15.5 Hz Compton-frequency range coupling to neutrons and protons, improving on previous limits by several-fold. This accelerated strategy has potential applications in other resonant search experiments.