Agronomy (Nov 2021)

Simulating Canopy Temperature Using a Random Forest Model to Calculate the Crop Water Stress Index of Chinese Brassica

  • Mingxin Yang,
  • Peng Gao,
  • Ping Zhou,
  • Jiaxing Xie,
  • Daozong Sun,
  • Xiongzhe Han,
  • Weixing Wang

DOI
https://doi.org/10.3390/agronomy11112244
Journal volume & issue
Vol. 11, no. 11
p. 2244

Abstract

Read online

The determination of crop water status has positive effects on the Chinese Brassica industry and irrigation decisions. Drought can decrease the production of Chinese Brassica, whereas over-irrigation can waste water. It is desirable to schedule irrigation when the crop suffers from water stress. In this study, a random forest model was developed using sample data derived from meteorological measurements including air temperature (Ta), relative humidity (RH), wind speed (WS), and photosynthetic active radiation (Par) to predict the lower baseline (Twet) and upper baseline (Tdry) canopy temperatures for Chinese Brassica from 27 November to 31 December 2020 (E1) and from 25 May to 20 June 2021 (E2). Crop water stress index (CWSI) values were determined based on the predicted canopy temperature and used to assess the crop water status. The study demonstrated the viability of using a random forest model to forecast Twet and Tdry. The coefficients of determination (R2) in E1 were 0.90 and 0.88 for development and 0.80 and 0.77 for validation, respectively. The R2 values in E2 were 0.91 and 0.89 for development and 0.83 and 0.80 for validation, respectively. Our results reveal that the measured and predicted CWSI values had similar R2 values related to stomatal conductance (~0.5 in E1, ~0.6 in E2), whereas the CWSI showed a poor correlation with transpiration rate (~0.25 in E1, ~0.2 in E2). Finally, the methodology used to calculate the daily CWSI for Chinese Brassica in this study showed that both Twet and Tdry, which require frequent measuring and design experiment due to the trial site and condition changes, have the potential to simulate environmental parameters and can therefore be applied to conveniently calculate the CWSI.

Keywords