Remote Sensing (Jul 2022)

Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions

  • Somaya Falah,
  • Alaa Mhawish,
  • Ali H. Omar,
  • Meytar Sorek-Hamer,
  • Alexei I. Lyapustin,
  • Tirthankar Banerjee,
  • Fadi Kizel,
  • David M. Broday

DOI
https://doi.org/10.3390/rs14153667
Journal volume & issue
Vol. 14, no. 15
p. 3667

Abstract

Read online

This study examines uncertainties in the retrieval of the Aerosol Optical Depth (AOD) for different aerosol types, which are obtained from different satellite-borne aerosol retrieval products over North Africa, California, Germany, and India and Pakistan in the years 2007–2019. In particular, we compared the aerosol types reported as part of the AOD retrieval from MODIS/MAIAC and CALIOP, with the latter reporting richer aerosol types than the former, and from the Ozone Monitoring Instrument (OMI) and MODIS Deep Blue (DB), which retrieve aerosol products at a lower spatial resolution than MODIS/MAIAC. Whereas MODIS and OMI provide aerosol products nearly every day over of the study areas, CALIOP has only a limited surface footprint, which limits using its data products together with aerosol products from other platforms for, e.g., estimation of surface particulate matter (PM) concentrations. In general, CALIOP and MAIAC AOD showed good agreement with the AERONET AOD (r: 0.708, 0.883; RMSE: 0.317, 0.123, respectively), but both CALIOP and MAIAC AOD retrievals were overestimated (36–57%) with respect to the AERONET AOD. The aerosol type reported by CALIOP (an active sensor) and by MODIS/MAIAC (a passive sensor) were examined against aerosol types derived from a combination of satellite data products retrieved by MODIS/DB (Angstrom Exponent, AE) and OMI (Aerosols Index, AI, the aerosol absorption at the UV band). Together, the OMI-DB (AI-AE) classification, which has wide spatiotemporal cover, unlike aerosol types reported by CALIOP or derived from AERONET measurements, was examined as auxiliary data for a better interpretation of the MAIAC aerosol type classification. Our results suggest that the systematic differences we found between CALIOP and MODIS/MAIAC AOD were closely related to the reported aerosol types. Hence, accounting for the aerosol type may be useful when predicting surface PM and may allow for the improved quantification of the broader environmental impacts of aerosols, including on air pollution and haze, visibility, climate change and radiative forcing, and human health.

Keywords