Scalable simple liquid deposition techniques for the enhancement of light absorption in thin films: Distributed Bragg reflectors coupled to 1D nanoimprinted textures
B. Brudieu,
I. Gozhyk,
W. R. Clements,
S. Mazoyer,
T. Gacoin,
J. Teisseire
Affiliations
B. Brudieu
Surface du Verre et Interfaces (SVI), UMR 125 CNRS/Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
I. Gozhyk
Surface du Verre et Interfaces (SVI), UMR 125 CNRS/Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
W. R. Clements
OMM, Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
S. Mazoyer
OMM, Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
T. Gacoin
Laboratoire de Physique de la Matière Condensée, UMR 7643, Ecole Polytechnique, CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau cedex, France
J. Teisseire
Surface du Verre et Interfaces (SVI), UMR 125 CNRS/Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
Light trapping within a light absorbing medium is a key to highly efficient thin film solar cells. We propose a large-scale procedure based on materials with low absorption for the fabrication of combined Distributed Bragg Reflector (DBR) and grating light trapping structures. Using Rigorous Coupled Wave Analysis (RCWA) numerical simulations we designed a combined DBR and 1D grating structure allowing to significantly improve the absorption in a aSi:H film as thin as 100 nm. The optimized light trapping structure was fabricated. The enhancement of light absorption in thin aSi:H film was experimentally proven and discussed quantitatively with respect to the theoretical expectations.