Land (Sep 2022)

Effects of Hydrologic Pulsing and Vegetation on Invertebrate Communities in Wetlands

  • Kurt S. Keljo

DOI
https://doi.org/10.3390/land11091554
Journal volume & issue
Vol. 11, no. 9
p. 1554

Abstract

Read online

Constructed, mitigation wetlands in the midwestern United States are frequently dominated by a Typha spp. monoculture and their hydrologies are often determined by adjustable control structures. Wetlands provide habitat for multiple macroinvertebrate species, which in turn provide food for other organisms inhabiting the wetlands, such as waterfowl. This study examined the impacts of plant diversity and manipulated hydrology on macroinvertebrate communities. Forty 1-m2 wetland mesocosms were either planted with a monoculture of Typha spp. or with a more diverse plant community of Schoenoplectus tabernaemontani, Juncus effusus, and Sparganium eurycarpum. They were also assigned to one of four hydrologic regimes: steady state, pulsing, deep spring/shallow fall, and shallow spring/deep summer. After one year, macroinvertebrates were sampled in the mesocosms. Mesocosms with deep spring hydrologies were found to have greater taxon diversity than those with other hydrologies, but Chironomidae biomass was the lowest under the deep spring hydrology. Culicidae and Chironomidae were found in higher numbers in mixed vegetation than in Typha spp. Taxon richness and Chironomid biomass were significantly higher in mixed vegetation mesocosms than in Typha spp. monocultures. Results suggest vegetation diversity and hydrological regimes impact macroinvertebrate communities, with potential implications for constructed wetland design and management.

Keywords