Water (Dec 2019)

Discussion on the Characteristics of Seismic Signals Due to Riverbank Landslides from Laboratory Tests

  • Zheng-Yi Feng,
  • Chia-Ming Hsu,
  • Shi-Hao Chen

DOI
https://doi.org/10.3390/w12010083
Journal volume & issue
Vol. 12, no. 1
p. 83

Abstract

Read online

Floods and erosion often cause landslides of riverbanks and induce problems such as river blockage, shift of river center, or flooding from rising riverbeds. Instrumentation and monitoring are often used to explore landslide and erosion behavior of riverbanks. Therefore, this study identified landslide types and characteristics of their seismic signals due to toe erosion of riverbanks through riverbank models with various instrumentation sensors in a laboratory flume. To induce landslides in the riverbank model, a test was set up for water to flow through the toe of the riverbank model. Seismic signals of each landslide event were measured during the tests with accelerometers. Nonpolarized electrodes were installed for observing the self-potential changes during the test. Water content and pore water pressure gauges were installed in the riverbank model. In addition, water levels were recorded. The Hilbert−Huang transform method was used to analyze the characteristics of seismic signals caused by water flow and riverbank landslides. Time points, landslide frequency distributions, and the characteristics of several landslide events in the riverbank models were estimated using the seismic signals. This study identified three types of landslides: single, intermittent, and successive. Moreover, changes in self-potential signals, pore water pressure, and water content during the tests were examined and were found to correspond to the landslide process of the riverbank model.

Keywords