PVA-Based Hydrogels Loaded with Diclofenac for Cartilage Replacement
Ana C. Branco,
Andreia S. Oliveira,
Inês Monteiro,
Pedro Nolasco,
Diana C. Silva,
Célio G. Figueiredo-Pina,
Rogério Colaço,
Ana P. Serro
Affiliations
Ana C. Branco
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Andreia S. Oliveira
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Inês Monteiro
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Pedro Nolasco
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Diana C. Silva
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Célio G. Figueiredo-Pina
CDP2T—Centro de Desenvolvimento de Produto e Transferência de Tecnologia, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Estefanilha, 2910-761 Setúbal, Portugal
Rogério Colaço
IDMEC—Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Ana P. Serro
CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
Polyvinyl alcohol (PVA) hydrogels have been widely studied for cartilage replacement due to their biocompatibility, chemical stability, and ability to be modified such that they approximate natural tissue behavior. Additionally, they may also be used with advantages as local drug delivery systems. However, their properties are not yet the most adequate for such applications. This work aimed to develop new PVA-based hydrogels for this purpose, displaying improved tribomechanical properties with the ability to control the release of diclofenac (DFN). Four types of PVA-based hydrogels were prepared via freeze-thawing: PVA, PVA/PAA (by polyacrylic acid (PAA) addition), PVA/PAA+PEG (by polyethylene glycol (PEG) immersion), and PVA/PAA+PEG+A (by annealing). Their morphology, water uptake, mechanical and rheological properties, wettability, friction coefficient, and drug release behavior were accessed. The irritability of the best-performing material was investigated. The results showed that the PAA addition increased the swelling and drug release amount. PEG immersion led to a more compact structure and significantly improved the material’s tribomechanical performance. The annealing treatment led to the material with the most suitable properties: besides presenting a low friction coefficient, it further enhanced the mechanical properties and ensured a controlled DFN release for at least 3 days. Moreover, it did not reveal irritability potential for biological tissues.