Frontiers in Chemistry (Jan 2019)

Theoretical Investigation on H2O2-Ng (He, Ne, Ar, Kr, Xe, and Rn) Complexes Suitable for Stereodynamics: Interactions and Thermal Chiral Rate Consequences

  • Yuri Alves de Oliveira Só,
  • Pedro Henrique de Oliveira Neto,
  • Luiz Guilherme Machado de Macedo,
  • Ricardo Gargano

DOI
https://doi.org/10.3389/fchem.2018.00671
Journal volume & issue
Vol. 6

Abstract

Read online

Although molecular collisions of noble gases (Ng) can be theoretically used to distinguish between the enantiomers of hydrogen peroxide - H2O2 (HP), little is known about the effects of HP-Ng interactions on the chiral rate. In this work, the chiral rate as a function of temperature (CRT) between enantiomeric conformations of HP and Ng (Ng=He, Ne, Ar, Kr, Xe, and Rn) are presented at MP2(full)/aug-cc-pVTZ level of theory through a fully basis set superposition error (BSSE) corrected potential energy surface. The results show that: (a) the CRT is highly affected even at a small decrease in the height of trans-barrier; (b) its smallest values occur with Ne for all temperatures between 100 and 4,000 K; (c) that the decrease of CRT shows an inverse correlation with respect to the average valence electron energy of the Ng and (d) Ne and He may be the noble gases more suitable for study the oriented collision dynamics of HP. In addition to binding energies, the electron density ρ and its Laplacian ∇2ρ topological analyses were also performed within the atoms in molecules (AIM) theory in order to determine the nature of the HP-Ng interactions. The results of this work provide a more complete foundation on experiments to study HP's chirality using Ng in crossed molecular beams without a light source.

Keywords