Effect of Base Conditions in One-Dimensional Numerical Simulation of Seismic Site Response: A Technical Note for Best Practice
Gaetano Falcone,
Giuseppe Naso,
Federico Mori,
Amerigo Mendicelli,
Gianluca Acunzo,
Edoardo Peronace,
Massimiliano Moscatelli
Affiliations
Gaetano Falcone
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
Giuseppe Naso
Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile (DPC), via Vitorchiano 2, 00189 Roma, Italy
Federico Mori
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
Amerigo Mendicelli
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
Gianluca Acunzo
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
Edoardo Peronace
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
Massimiliano Moscatelli
CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy
The effects induced by the choice of numerical base conditions for evaluating local seismic response are investigated in this technical note, aiming to provide guidelines for professional applications. A numerical modelling of the seismic site response is presented, assuming a one-dimensional scheme. At first, with reference to the case of a homogeneous soil layer overlying a half-space, two different types of numerical base conditions, named rigid and elastic, were adopted to analyse the seismic site response. Then, geological setting, physical and mechanical properties were selected from Italian case studies. In detail, the following stratigraphic successions were considered: shallow layer 1 (shear wave velocity, VS, equal to 400 m/s), layer 2 (VS equal to 600 m/s) and layer 3 (VS equal to 800 m/s). In addition, real signals were retrieved from the web site of the Italian accelerometric strong motion network. Rigid and elastic base conditions were adopted to estimate the ground motion modifications of the reference signals. The results are presented in terms of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and are compared between the adopted numerical models.