Microorganisms (Dec 2022)

Attenuation of <i>Pseudomonas aeruginosa</i> Virulence by Pomegranate Peel Extract

  • Samuele Peppoloni,
  • Bruna Colombari,
  • Davide Tagliazucchi,
  • Alessandra Odorici,
  • Cristiano Ventrucci,
  • Aida Meto,
  • Elisabetta Blasi

DOI
https://doi.org/10.3390/microorganisms10122500
Journal volume & issue
Vol. 10, no. 12
p. 2500

Abstract

Read online

Pseudomonas aeruginosa is an opportunistic pathogen often responsible for biofilm-associated infections. The high adhesion of bacterial cells onto biotic/abiotic surfaces is followed by production of an extracellular polysaccharidic matrix and formation of a sessile community (the biofilm) by the release of specific quorum-sensing molecules, named autoinducers (AI). When the concentrations of AI reach a threshold level, they induce the expression of many virulence genes, including those involved in biofilm formation, motility, pyoverdine and pyocyanin release. P. aeruginosa embedded into biofilm becomes resistant to both conventional drugs and the host’s immune response. Accordingly, biofilm-associated infections are a major clinical problem underlining the need for new antimicrobial therapies. In this study, we evaluated the effects of pomegranate peel extract (PomeGr) in vitro on P. aeruginosa growth and biofilm formation; moreover, the release of four AI was assessed. The phenolic profile of PomeGr, exposed or not to bacteria, was determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. We found that bacterial growth, biofilm production and AI release were impaired upon PomeGr treatment. In addition, the PomeGr phenolic content was also markedly hampered following incubation with bacterial cells. In particular, punicalagin, punicalin, pedunculagin, granatin, di-(HHDP-galloyl-hexoside) pentoside and their isomers were highly consumed. Overall, these results provide novel insights on the ability of PomeGr to attenuate P. aeruginosa virulence; moreover, the AI impairment and the observed consumption of specific phenolic compounds may offer new tools in designing innovative therapeutic approaches against bacterial infections.

Keywords