Cardiovascular Diabetology (Jul 2021)

The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats

  • Elias Daud,
  • Offir Ertracht,
  • Nadav Bandel,
  • Gassan Moady,
  • Monah Shehadeh,
  • Tali Reuveni,
  • Shaul Atar

DOI
https://doi.org/10.1186/s12933-021-01322-6
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Myocardial fibrosis is a multistep process, which results in collagen deposition in the injured muscle. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor (SGLT2i), decreases cardiovascular events risk. Little is known on the effects of empagliflozin in non-diabetic patients early post myocardial infarction. Methods Fourteen non-diabetic rats underwent myocardial infarction induction, and treated or not (control)immediately after myocardial infarction by daily empagliflozin (30 mg/kg/day). We evaluated cardiac function at baseline, 2 and 4 weeks after myocardial infarction by echocardiography, and prior to sacrifice by Millar pressure–volume system. We performed histological and biochemical evaluation of fibrosis and humoral factors promoting fibrosis. Results Baseline ejection fractions were 69.9 ± 5.3% and 76.4 ± 5.4%, and dropped to final values of 40.1 ± 5.8% and 39.4 ± 5.4% in the control and empagliflozin groups, respectively (P 0.05 between groups). Collagen deposition, measured as collagen volume fraction, was higher in both the scar and the remote cardiac areas of the control group 79.1 ± 6.2% and 4.6 ± 2.5% for control, and 53.8 ± 5.4% and 2.5 ± 1.3% for empagliflozin group, respectively (P < 0.05 for each). Remote cardiac muscle collagen, measured by hydroxyproline, was 4.1 ± 0.4 μg/μl and 3.6 ± 0.2 μg/μl (P = 0.07). TGF-β1 and Smad3 expression decreased by empagliflozin—18.73 ± 16.32%, 9.16 ± 5.69% and 16.32 ± 5.4%, 7.00 ± 5.28% in the control and empagliflozin groups, respectively (P < 0.05). Conclusion/interpretation Empagliflozin administered early after myocardial infarction reduce myocardial fibrosis and inhibit the TGF-β1/Smad3 fibrotic pathway, probably prior to exerting any hemodynamic or physiological effect.

Keywords