Brain Stimulation (Sep 2023)
The intracortical excitability changes underlying the enhancing effects of rewards and punishments on motor performance
Abstract
Monetary rewards and punishments enhance motor performance and are associated with corticospinal excitability (CSE) increases within the motor cortex (M1) during movement preparation. However, such CSE changes have unclear origins. Based on converging evidence, one possibility is that they stem from increased glutamatergic (GLUTergic) facilitation and/or decreased type A gamma-aminobutyric acid (GABAA)-mediated inhibition within M1. To investigate this, paired-pulse transcranial magnetic stimulation was used over the left M1 to evaluate intracortical facilitation (ICF) and short intracortical inhibition (SICI), indirect assays of GLUTergic activity and GABAA-mediated inhibition, in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. Behaviourally, rewards and punishments enhanced both reaction and movement time. During movement preparation, regardless of rewards or punishments, ICF increased when the index finger initiated sequences, whereas SICI decreased when both the index and little fingers initiated sequences. This finding suggests that GLUTergic activity increases in a finger-specific manner whilst GABAA-mediated inhibition decreases in a finger-unspecific manner during preparation. In parallel, both rewards and punishments non-specifically increased ICF, but only rewards non-specifically decreased SICI as compared to neutral. This suggests that to enhance performance rewards both increase GLUTergic activity and decrease GABAA-mediated inhibition, whereas punishments selectively increase GLUTergic activity. A control experiment revealed that such changes were not observed post-movement as participants processed reward and punishment feedback, indicating they were selective to movement preparation. Collectively, these results map the intracortical excitability changes in M1 by which incentives enhance motor performance.