Life (Sep 2022)

Radiomics Nomogram Based on High-<i>b</i>-Value Diffusion-Weighted Imaging for Distinguishing the Grade of Bladder Cancer

  • Cui Feng,
  • Ziling Zhou,
  • Qiuhan Huang,
  • Xiaoyan Meng,
  • Zhen Li,
  • Yanchun Wang

DOI
https://doi.org/10.3390/life12101510
Journal volume & issue
Vol. 12, no. 10
p. 1510

Abstract

Read online

Background: The aim was to evaluate the feasibility of radiomics features based on diffusion-weighted imaging (DWI) at high b-values for grading bladder cancer and to compare the possible advantages of high-b-value DWI over the standard b-value DWI. Methods: Seventy-four participants with bladder cancer were included in this study. DWI sequences using a 3 T MRI with b-values of 1000, 1700, and 3000 s/mm2 were acquired, and the corresponding ADC maps were generated, followed with feature extraction. Patients were randomly divided into training and testing cohorts with a ratio of 8:2. The radiomics features acquired from the ADC1000, ADC1700, and ADC3000 maps were compared between low- and high-grade bladder cancers by using the Wilcox analysis, and only the radiomics features with significant differences were selected. The least absolute shrinkage and selection operator method and a logistic regression were performed for the feature selection and establishing the radiomics model. A receiver operating characteristic (ROC) analysis was conducted to assess the diagnostic performance of the radiomics models. Results: In the training cohorts, the AUCs of the ADC1000, ADC1700, and ADC3000 model for discriminating between low- from high-grade bladder cancer were 0.901, 0.920, and 0.901, respectively. In the testing cohorts, the AUCs of ADC1000, ADC1700, and ADC3000 were 0.582, 0.745, and 0.745, respectively. Conclusions: The radiomics features extracted from the ADC1700 maps could improve the diagnostic accuracy over those extracted from the conventional ADC1000 maps.

Keywords