Journal of Functional Biomaterials (Nov 2024)

Enhancing the Biological Properties of Organic–Inorganic Hybrid Calcium Silicate Cements: An In Vitro Study

  • Minji Choi,
  • Jiyoung Kwon,
  • Ji-Hyun Jang,
  • Duck-Su Kim,
  • Hyun-Jung Kim

DOI
https://doi.org/10.3390/jfb15110337
Journal volume & issue
Vol. 15, no. 11
p. 337

Abstract

Read online

(1) Background: This study aimed to enhance the biological properties of hydraulic calcium silicate cements (HCSCs) by incorporating organic and inorganic components, specifically elastin-like polypeptides (ELPs) and bioactive glass (BAG). We focused on the effects of these composites on the viability, migration, and osteogenic differentiation of human periodontal ligament fibroblasts (hPDLFs). (2) Methods: Proroot MTA was supplemented with 1–5 wt% 63S BAG and 10 wt% ELP. The experimental groups contained various combinations of HSCS with ELP and BAG. Cell viability was assessed using an MTT assay, cell migration was evaluated using wound healing and transwell assays, and osteogenic activity was determined through Alizarin Red S staining and a gene expression analysis of osteogenic markers (ALP, RUNX-2, OCN, and Col1A2). (3) Results: The combination of ELP and BAG significantly enhanced the viability of hPDLFs with an optimal BAG concentration of 1–4%. Cell migration assays demonstrated faster migration rates in groups with 2–4% BAG and ELP incorporation. Osteogenic activity was the highest with 2–3% BAG incorporation with ELP, as evidenced by intense Alizarin Red S staining and the upregulation of osteogenic differentiation markers. (4) Conclusions: The incorporation of ELP (organic) and BAG (inorganic) into HCSC significantly enhances the viability, migration, and osteogenic differentiation of hPDLFs. These findings suggest that composite HCSC might support healing in destructed bone lesions in endodontics.

Keywords