PLoS ONE (Jan 2021)

Facial expressions of Asian people exposed to constructed urban forests: Accuracy validation and variation assessment.

  • Haoming Guan,
  • Hongxu Wei,
  • Richard J Hauer,
  • Ping Liu

DOI
https://doi.org/10.1371/journal.pone.0253141
Journal volume & issue
Vol. 16, no. 6
p. e0253141

Abstract

Read online

An outcome of building sustainable urban forests is that people's well-being is improved when they are exposed to trees. Facial expressions directly represents one's inner emotions, and can be used to assess real-time perception. The emergence and change in the facial expressions of forest visitors are an implicit process. As such, the reserved character of Asians requires an instrument rating to accurately recognize expressions. In this study, a dataset was established with 2,886 randomly photographed faces from visitors at a constructed urban forest park and at a promenade during summertime in Shenyang City, Northeast China. Six experts were invited to choose 160 photos in total with 20 images representing one of eight typical expressions: angry, contempt, disgusted, happy, neutral, sad, scared, and surprised. The FireFACE ver. 3.0 software was used to test hit-ratio validation as an accuracy measurement (ac.) to match machine-recognized photos with those identified by experts. According to the Kruskal-Wallis test on the difference from averaged scores in 20 recently published papers, contempt (ac. = 0.40%, P = 0.0038) and scared (ac. = 25.23%, P = 0.0018) expressions do not pass the validation test. Both happy and sad expression scores were higher in forests than in promenades, but there were no difference in net positive response (happy minus sad) between locations. Men had a higher happy score but lower disgusted score in forests than in promenades. Men also had a higher angry score in forests. We conclude that FireFACE can be used for analyzing facial expressions in Asian people within urban forests. Women are encouraged to visit urban forests rather than promenades to elicit more positive emotions.