Microorganisms (Oct 2023)

Analysis of Microbial Diversity in South Shetland Islands and Antarctic Peninsula Soils Based on Illumina High-Throughput Sequencing and Cultivation-Dependent Techniques

  • Siqi Cui,
  • Jie Du,
  • Lin Zhu,
  • Di Xin,
  • Yuhua Xin,
  • Jianli Zhang

DOI
https://doi.org/10.3390/microorganisms11102517
Journal volume & issue
Vol. 11, no. 10
p. 2517

Abstract

Read online

To assess the diversity of bacterial taxa in Antarctic soils and obtain novel microbial resources, 15 samples from 3 sampling sites (DIS5, GWS7, FPS10) of South Shetland Islands and 2 sampling sites (APS18, CIS17) of Antarctic Peninsula were collected. High-throughput sequencing (HTS) of 16S rRNA genes within these samples was conducted on an Illumina Miseq platform. A total of 140,303 16S rRNA gene reads comprising 802 operational taxonomic units (OTUs) were obtained. After taxonomic classification, 25 phyla, 196 genera, and a high proportion of unidentified taxa were detected, among which seven phyla and 99 genera were firstly detected in Antarctica. The bacterial communities were dominated by Actinomycetota (40.40%), Pseudomonadota (17.14%), Bacteroidota (10.55%) and Chloroflexota (10.26%). Based on the HTS analyses, cultivation-dependent techniques were optimized to identify the cultivable members. A total of 30 different genera including 91 strains were obtained, the majority of which has previously been reported from Antarctica. However, for the genera Microterricola, Dyadobacter, Filibacter, Duganella, Ensifer, Antarcticirhabdus and Microvirga, this is the first report in Antarctica. In addition, seven strains represented novel taxa, two of which were psychropoilic and could be valuable resources for further research of cold-adaptability and their ecological significance in Antarctica.

Keywords