Evaluating reproducibility and subject-specificity of microstructure-informed connectivity
Philipp J. Koch,
Gabriel Girard,
Julia Brügger,
Andéol G. Cadic-Melchior,
Elena Beanato,
Chang-Hyun Park,
Takuya Morishita,
Maximilian J. Wessel,
Marco Pizzolato,
Erick J. Canales-Rodríguez,
Elda Fischi-Gomez,
Simona Schiavi,
Alessandro Daducci,
Gian Franco Piredda,
Tom Hilbert,
Tobias Kober,
Jean-Philippe Thiran,
Friedhelm C. Hummel
Affiliations
Philipp J. Koch
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Neurology, University of Lübeck, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany
Gabriel Girard
CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Corresponding author at: EPFL-STI-IEM-LTS5, Station 11, CH-1015 Lausanne, Switzerland.
Julia Brügger
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
Andéol G. Cadic-Melchior
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
Elena Beanato
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
Chang-Hyun Park
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
Takuya Morishita
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
Maximilian J. Wessel
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany
Marco Pizzolato
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
Erick J. Canales-Rodríguez
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Elda Fischi-Gomez
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Translational Machine Learning Lab, Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
Simona Schiavi
Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
Alessandro Daducci
Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
Gian Franco Piredda
Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
Tom Hilbert
Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
Tobias Kober
Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
Jean-Philippe Thiran
CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Friedhelm C. Hummel
Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Clinical Neuroscience, University Hospital of Geneva (HUG), Geneva, Switzerland
Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to reduce the underlaying noise and the data dimensionality (using principal component analysis), highlighting the importance of these tools for future studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest intraindividual variance originated from the sole repetition of data measurements (inter-run).