The Egyptian Journal of Radiology and Nuclear Medicine (Jun 2024)
Dobutamine stress cardiac magnetic resonance-feature tracking in assessment of myocardial ischemia and viability
Abstract
Abstract Background Cardiovascular magnetic resonance-feature tracking (CMR-FT) is a novel quantitative objective noninvasive technique in the assessment of myocardial deformation. The purpose of that study was to assess the capability of the CMR-FT in the detection of myocardial ischemia and viability. We investigated 30 patients (n = 480 myocardial segments), with known or suspected coronary artery disease (CAD). Dobutamine stress cardiovascular magnetic resonance (DS-CMR) and late gadolinium enhancement (LGE) were used to identify the viable non-ischemic, ischemic, and non-viable myocardial segments. Cine images at rest were used to calculate the segmental radial (Err), circumferential (Ecc), and longitudinal (Ell) strain parameters by manual contouring of endocardial and epicardial borders using Segment Software. Results Of the 480 myocardial segments and based on the DS-CMR and LGE results, 338 segments were defined as viable non-ischemic (remote), 101 segments were viable ischemic, and 41 segments were non-viable. Rest segmental Ecc, Err, and Ell values were significantly impaired in the non-viable (mean ± SD = − 3.94 ± 4.99%, 11.81 ± 12.55%, and − 7.50 ± 6.96%, respectively) compared to both viable groups, p < 0.001. Ecc and Err significantly differentiated between the non-ischemic and ischemic groups (mean ± SD = − 19.14 ± 7.20% vs − 13.18 ± 8.57% and 44.03 ± 19.56% vs 32.79 ± 17.91% respectively), p < 0.001. However, Ell showed no statistical significance between them (mean ± SD = − 16.44 ± 8.78% vs − 16.12 ± 10.00%, p = 0.945). Conclusions CMR-FT can differentiate between viable and non-viable as well as ischemic and non-ischemic myocardial segments. So, such a noninvasive technique has a promising additional objective diagnostic role in conjunction with CMR in ischemia and viability assessment or even may replace stress and LGE studies in the future.
Keywords