The Egyptian Heart Journal (May 2022)
Highlighting the role of global longitudinal strain assessment in valvular heart disease
Abstract
Abstract Background Echocardiography has been the choice for imaging modality for valvular heart disease. It is less invasive, widely available, and allows valvular structure visualization. Echocardiographic assessment often also determines the management. Left ventricular ejection fraction is the most commonly used indicator during echocardiography assessment. It shows signs of left ventricular dysfunction in patients with valve disease. However, most of the time, the ongoing process of cardiac damage may already occur even with preserved cardiac function; further deteriorated ejection fraction will show irreversible cardiac damage. There is a need for a more advanced diagnostic tool to detect early cardiac dysfunction, to prevent further damage. Main body Advanced echocardiography imaging using strain imaging allows a physician to evaluate cardiac function more precisely. A more sensitive parameter than left ventricular ejection fraction, global longitudinal strain, can evaluate subclinical myocardial dysfunction before the symptoms occur by evaluating complex cardiac mechanisms. Global longitudinal strain evaluation provides the chance for physicians to determine the intervention needed to prevent further deterioration and permanent cardiac dysfunction. Global longitudinal strain is proven to be beneficial in many types of valvular heart diseases, especially in mitral and aortic valve diseases. It has an excellent diagnostic and prognostic value for patients with valve disease. This review aims to present the superiority of global longitudinal strain compared to left ventricular ejection fraction in assessing cardiac function in patients with valvular heart disease. Clinical usage of global longitudinal strain in several valvular heart diseases is also presented in this review. Conclusions The superiority of global longitudinal strain to left ventricular ejection fraction relies on the mechanism where other strains would compensate for the deterioration of longitudinal strain, which is more vulnerable to damage, so the cardiac function is preserved. Therefore, examination of longitudinal strain would give the physician early signs of cardiac function impairment, and prompt management can be conducted.
Keywords