AIMS Mathematics (Jul 2022)
A generalization of identities in groupoids by functions
Abstract
In this paper, we introduce the notions of a left and a right idenfunction in a groupoid by using suitable functions, and we apply this concept to several algebraic structures. Especially, we discuss its role in linear groupoids over a field. We show that, given an invertible function φ, there exists a groupoid such that φ is a right idenfunction. The notion of a right pseudo semigroup will be discussed in linear groupoids. The notion of an inversal is a generalization of an inverse element, and it will be discussed with idenfunctions in linear groupoids over a field.
Keywords