Radiation Oncology (Feb 2022)

Assessment and validation of the internal gross tumour volume of gastroesophageal junction cancer during simultaneous integrated boost radiotherapy

  • Jinming Shi,
  • Yuan Tang,
  • Ning Li,
  • Yongwen Song,
  • Shulian Wang,
  • Yueping Liu,
  • Hui Fang,
  • Ningning Lu,
  • Yu Tang,
  • Shunan Qi,
  • Bo Chen,
  • Yexiong Li,
  • Wenyang Liu,
  • Jing Jin

DOI
https://doi.org/10.1186/s13014-022-01996-6
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Respiratory motion may introduce errors during radiotherapy. This study aims to assess and validate internal gross tumour volume (IGTV) margins in proximal and distal borders of gastroesophageal junction (GEJ) tumours during simultaneous integrated boost radiotherapy. Methods We enrolled 10 patients in group A and 9 patients in group B. For all patients, two markers were placed at the upper and lower borders of the tumour before treatment. In group A, within the simulation and every 5 fractions of radiotherapy, we used 4-dimensional computed tomography (4DCT) to record the intrafractional displacement of the proximal and distal markers. By fusing the average image of each repeated 4DCT with the simulation image based on the lumbar vertebra, the interfractional displacement could be obtained. We calculated the IGTV margin in the proximal and distal borders of the GEJ tumour. In group B, by referring to the simulation images and cone-beam computed tomography (CBCT) images, the range of tumour displacement in proximal and distal borders of GEJ tumour was estimated. We calculated the proportion of marker displacement range in group B lay within the IGTV margin calculated based on the data obtained in group A to estimate the accuracy of the IGTV margin. Results The intrafractional displacement in the cranial–caudal (CC) direction was significantly larger than that in the anterior–posterior (AP) and left–right (LR) directions for both the proximal and distal markers of the tumour. The interfractional displacement in the AP and LR directions was larger than that in the CC direction (p = 0.001, p = 0.017) based on the distal marker. The IGTV margins in the LR, AP and CC directions were 9 mm, 8.5 mm and 12.1 mm for the proximal marker and 15.8 mm, 12.7 mm and 11.5 mm for the distal marker, respectively. In group B, the proportions of markers that located within the IGTV margin in the LR, AP and CC directions were 96.5%, 91.3% and 96.5% for the proximal marker and 100%, 96.5%, 93.1% for the distal marker, respectively. Conclusions Our study proposed individualized IGTV margins for proximal and distal borders of GEJ tumours during neoadjuvant radiotherapy. The IGTV margin determined in this study was acceptable. This margin could be a reference in clinical practice.

Keywords