International Journal of Digital Curation (Jun 2024)
DMPs as Management Tool for Intellectual Assets by SMART-metrics
Abstract
Data Management Plans (DMPs) are vital components of effective research data management (RDM). They serve not only as organisational tools but also as a structured framework dictating the collection, processing, sharing/publishing, and management of data throughout the research data life cycle. This can include existing data curation standards, the establishment of data handling protocols, and the creation, when necessary, of community curation policies. Therefore, DMPs present a unique opportunity to harmonise project management efforts for optimising the formulation and execution of project objectives. To harness the full potential of DMPs as project management tools, the SMART approach (i.e., Specific, Measurable, Achievable, Relevant, and Time-bound) emerges as a compelling methodology. During the initial stage of the project proposal, drafted SMART metrics can offer a systematic approach to map work packages (WPs) and deliverables to the overarching project objectives. Then, the Principal Investigators (PIs) can ensure the consortia that all the project potential intellectual assets (i.e., expected research results) were considered properly, as well as their necessary timelines, resources, and execution. It becomes imperative for data stewards (DSs) and governance policymakers to educate and provide guidelines to researchers on the advantages of developing well-curated DMPs that align results with SMART metrics. This alignment ensures that every intellectual asset intended as a research result (e.g., intellectual properties, publications, datasets, and software) within the project is subject to rigorous drafted planning, execution, and accountability. Consequently, the risk of unforeseen setbacks and/or deviations from the original objectives is minimised, increasing the traceability and transparency of the research data life cycle. In addition, the integration of Technology Readiness Levels (TRLs) into this proposed enhanced DMP provides a systematic method to evaluate the maturity and readiness of technologies across scientific disciplines. Regular TRL assessments will allow PIs: (1) to monitor the WP progress, (2) to adapt research strategies if required, and (3) to ensure the projects remain in line with the drafted SMART metrics in the enhanced DMP before the project started. The TRLs can also help PIs maintain their focus on project milestones and specific tasks aligned with the original objectives, contributing to the overall success of their endeavours, while improving the transparency for the reporting and divulgation of the research results. The paper presents the overall framework for enhancing DMPs as project management tools for any intellectual assets using SMART metrics and TRLs, as well as introducing suggested support services for data stewardship teams to assist PIs when implementing this novel framework effectively.