Frontiers in Physics (Dec 2024)
Design, construction, and test of compact, distributed-charge, X-band accelerator systems that enable image-guided, VHEE FLASH radiotherapy
- Christopher P. J. Barty,
- Christopher P. J. Barty,
- Christopher P. J. Barty,
- J. Martin Algots,
- Alexander J. Amador,
- James C. R. Barty,
- Shawn M. Betts,
- Marcelo A. Castañeda,
- Matthew M. Chu,
- Michael E. Daley,
- Ricardo A. De Luna Lopez,
- Derek A. Diviak,
- Haytham H. Effarah,
- Haytham H. Effarah,
- Haytham H. Effarah,
- Roberto Feliciano,
- Adan Garcia,
- Keith J. Grabiel,
- Alex S. Griffin,
- Frederic V. Hartemann,
- Leslie Heid,
- Leslie Heid,
- Yoonwoo Hwang,
- Gennady Imeshev,
- Michael Jentschel,
- Christopher A. Johnson,
- Kenneth W. Kinosian,
- Agnese Lagzda,
- Russell J. Lochrie,
- Michael W. May,
- Everardo Molina,
- Christopher L. Nagel,
- Henry J. Nagel,
- Kyle R. Peirce,
- Zachary R. Peirce,
- Mauricio E. Quiñonez,
- Ferenc Raksi,
- Kelanu Ranganath,
- Trevor Reutershan,
- Trevor Reutershan,
- Trevor Reutershan,
- Jimmie Salazar,
- Mitchell E. Schneider,
- Michael W. L. Seggebruch,
- Michael W. L. Seggebruch,
- Joy Y. Yang,
- Nathan H. Yeung,
- Collette B. Zapata,
- Luis E. Zapata,
- Eric J. Zepeda,
- Jingyuan Zhang
Affiliations
- Christopher P. J. Barty
- Lumitron Technologies, Inc., Irvine, CA, United States
- Christopher P. J. Barty
- Physics and Astronomy Department, University of California, Irvine, Irvine, CA, United States
- Christopher P. J. Barty
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States
- J. Martin Algots
- Lumitron Technologies, Inc., Irvine, CA, United States
- Alexander J. Amador
- Lumitron Technologies, Inc., Irvine, CA, United States
- James C. R. Barty
- Lumitron Technologies, Inc., Irvine, CA, United States
- Shawn M. Betts
- Lumitron Technologies, Inc., Irvine, CA, United States
- Marcelo A. Castañeda
- Lumitron Technologies, Inc., Irvine, CA, United States
- Matthew M. Chu
- Lumitron Technologies, Inc., Irvine, CA, United States
- Michael E. Daley
- Lumitron Technologies, Inc., Irvine, CA, United States
- Ricardo A. De Luna Lopez
- Lumitron Technologies, Inc., Irvine, CA, United States
- Derek A. Diviak
- Lumitron Technologies, Inc., Irvine, CA, United States
- Haytham H. Effarah
- Lumitron Technologies, Inc., Irvine, CA, United States
- Haytham H. Effarah
- Physics and Astronomy Department, University of California, Irvine, Irvine, CA, United States
- Haytham H. Effarah
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States
- Roberto Feliciano
- Lumitron Technologies, Inc., Irvine, CA, United States
- Adan Garcia
- Lumitron Technologies, Inc., Irvine, CA, United States
- Keith J. Grabiel
- Lumitron Technologies, Inc., Irvine, CA, United States
- Alex S. Griffin
- Lumitron Technologies, Inc., Irvine, CA, United States
- Frederic V. Hartemann
- Lumitron Technologies, Inc., Irvine, CA, United States
- Leslie Heid
- Lumitron Technologies, Inc., Irvine, CA, United States
- Leslie Heid
- Physics and Astronomy Department, University of California, Irvine, Irvine, CA, United States
- Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, CA, United States
- Gennady Imeshev
- Lumitron Technologies, Inc., Irvine, CA, United States
- Michael Jentschel
- Lumitron Technologies, Inc., Irvine, CA, United States
- Christopher A. Johnson
- Lumitron Technologies, Inc., Irvine, CA, United States
- Kenneth W. Kinosian
- Lumitron Technologies, Inc., Irvine, CA, United States
- Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, CA, United States
- Russell J. Lochrie
- Lumitron Technologies, Inc., Irvine, CA, United States
- Michael W. May
- Lumitron Technologies, Inc., Irvine, CA, United States
- Everardo Molina
- Lumitron Technologies, Inc., Irvine, CA, United States
- Christopher L. Nagel
- Lumitron Technologies, Inc., Irvine, CA, United States
- Henry J. Nagel
- Lumitron Technologies, Inc., Irvine, CA, United States
- Kyle R. Peirce
- Lumitron Technologies, Inc., Irvine, CA, United States
- Zachary R. Peirce
- Lumitron Technologies, Inc., Irvine, CA, United States
- Mauricio E. Quiñonez
- Lumitron Technologies, Inc., Irvine, CA, United States
- Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, CA, United States
- Kelanu Ranganath
- Lumitron Technologies, Inc., Irvine, CA, United States
- Trevor Reutershan
- Lumitron Technologies, Inc., Irvine, CA, United States
- Trevor Reutershan
- Physics and Astronomy Department, University of California, Irvine, Irvine, CA, United States
- Trevor Reutershan
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States
- Jimmie Salazar
- Lumitron Technologies, Inc., Irvine, CA, United States
- Mitchell E. Schneider
- Lumitron Technologies, Inc., Irvine, CA, United States
- Michael W. L. Seggebruch
- Lumitron Technologies, Inc., Irvine, CA, United States
- Michael W. L. Seggebruch
- Physics and Astronomy Department, University of California, Irvine, Irvine, CA, United States
- Joy Y. Yang
- Lumitron Technologies, Inc., Irvine, CA, United States
- Nathan H. Yeung
- Lumitron Technologies, Inc., Irvine, CA, United States
- Collette B. Zapata
- Lumitron Technologies, Inc., Irvine, CA, United States
- Luis E. Zapata
- Lumitron Technologies, Inc., Irvine, CA, United States
- Eric J. Zepeda
- Lumitron Technologies, Inc., Irvine, CA, United States
- Jingyuan Zhang
- Lumitron Technologies, Inc., Irvine, CA, United States
- DOI
- https://doi.org/10.3389/fphy.2024.1472759
- Journal volume & issue
-
Vol. 12
Abstract
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates (∼ 10 Gy in less than 100 ns). The physics of laser-Compton x-ray scattering ensures that the x-rays produced by this process follow exactly the trajectory of the electrons from which the x-rays were produced, thus providing a route to not only compact VHEE radiotherapy but also image-guided, VHEE FLASH radiotherapy. This manuscript will review the compact accelerator architecture considerations that simultaneously optimize the production of laser-Compton x-rays from the collision of energetic laser pulses with high energy electrons and the production of high-bunch-charge VHEEs. The primary keys to this optimization are use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 µA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x rays via laser-Compton scattering for clinical imaging and does so from a machine of “clinical” footprint. At the same time, the production of 1,000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
Keywords