Stem Cells International (Jan 2015)

HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response—Implications on HSCT Outcome

  • Thomas Kraemer,
  • Alexander A. Celik,
  • Trevor Huyton,
  • Heike Kunze-Schumacher,
  • Rainer Blasczyk,
  • Christina Bade-Döding

DOI
https://doi.org/10.1155/2015/346714
Journal volume & issue
Vol. 2015

Abstract

Read online

The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.