Signals (Apr 2021)

An Educational Guide through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing

  • Meinard Müller

DOI
https://doi.org/10.3390/signals2020018
Journal volume & issue
Vol. 2, no. 2
pp. 245 – 285

Abstract

Read online

This paper provides a guide through the FMP notebooks, a comprehensive collection of educational material for teaching and learning fundamentals of music processing (FMP) with a particular focus on the audio domain. Organized in nine parts that consist of more than 100 individual notebooks, this collection discusses well-established topics in music information retrieval (MIR) such as beat tracking, chord recognition, music synchronization, audio fingerprinting, music segmentation, and source separation, to name a few. These MIR tasks provide motivating and tangible examples that students can hold onto when studying technical aspects in signal processing, information retrieval, or pattern analysis. The FMP notebooks comprise detailed textbook-like explanations of central techniques and algorithms combined with Python code examples that illustrate how to implement the methods. All components, including the introductions of MIR scenarios, illustrations, sound examples, technical concepts, mathematical details, and code examples, are integrated into a unified framework based on Jupyter notebooks. Providing a platform with many baseline implementations, the FMP notebooks are suited for conducting experiments and generating educational material for lectures, thus addressing students, teachers, and researchers. While giving a guide through the notebooks, this paper’s objective is to yield concrete examples on how to use the FMP notebooks to create an enriching, interactive, and interdisciplinary supplement for studies in science, technology, engineering, and mathematics. The FMP notebooks (including HTML exports) are publicly accessible under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Keywords