eLife (Jun 2023)

Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors

  • Claudia Dell'Amico,
  • Marilyn M Angulo Salavarria,
  • Yutaka Takeo,
  • Ichiko Saotome,
  • Maria Teresa Dell'Anno,
  • Maura Galimberti,
  • Enrica Pellegrino,
  • Elena Cattaneo,
  • Angeliki Louvi,
  • Marco Onorati

DOI
https://doi.org/10.7554/eLife.81716
Journal volume & issue
Vol. 12

Abstract

Read online

WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.

Keywords