Land (Jan 2025)
Regional Differences in the Impact of Land Use Pattern on Total Phosphorus Concentration in the Yangtze River Basin
Abstract
Accurately assessing the impact of land use patterns on total phosphorus (TP) concentration in surface water is crucial for protecting the water environment of the Yangtze River Basin (YRB). However, due to the heterogeneity of land use patterns, the regional differences in the intensity and direction of their impacts on TP concentrations in the YRB remain insufficiently understood. This study utilizes water quality monitoring data from state-controlled sections in 2021 and employs spatial autocorrelation analysis, geographic detectors, and Pearson correlation models to identify the impacts of land use on TP concentrations at multiple scales across the YRB. The results indicate that TP concentrations at 98.8% of the monitoring stations in the YRB exceed the Class III standard, with high concentrations of TP concentrated in the Pudu River Basin, Chengdu Plain, Jianghan Plain, and Yangtze River Delta regions. At the YRB scale, the spatial pattern of built-up land, cropland, and industrial and mining land significantly increases TP concentrations, while the pattern of forest and grassland areas exert mitigating effects. At the sub-basin scale, the impact of land use patterns on TP concentrations varies regionally. Specifically, TP concentrations in the Pudu River Basin are primarily attributed to the spatial pattern of industrial and mining land, in the Chengdu Plain to the spatial pattern of cropland and industrial and mining land, and in the Jianghan Plain to the spatial pattern of cropland, built-up land, and industrial and mining land. These results provided decision support for TP concentration control strategies and effective mitigation measures.
Keywords