<i>Anopheles albimanus</i> (Diptera: Culicidae) Ensemble Distribution Modeling: Applications for Malaria Elimination
Charlotte G. Rhodes,
Jose R. Loaiza,
Luis Mario Romero,
José Manuel Gutiérrez Alvarado,
Gabriela Delgado,
Obdulio Rojas Salas,
Melissa Ramírez Rojas,
Carlos Aguilar-Avendaño,
Ezequías Maynes,
José A. Valerín Cordero,
Alonso Soto Mora,
Chystrie A. Rigg,
Aryana Zardkoohi,
Monica Prado,
Mariel D. Friberg,
Luke R. Bergmann,
Rodrigo Marín Rodríguez,
Gabriel L. Hamer,
Luis Fernando Chaves
Affiliations
Charlotte G. Rhodes
Department of Entomology, Texas A&M University, College Station, TX 77843, USA
Jose R. Loaiza
Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad de Panama Apartado Postal 0816-02593, Panama
Luis Mario Romero
Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia Apartado Postal 304-3000, Costa Rica
José Manuel Gutiérrez Alvarado
Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Gabriela Delgado
Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Obdulio Rojas Salas
Programa Nacional de Manejo Integrado de Vectores, Región Huetar Norte, Ministerio de Salud, Muelle de San Carlos, San Carlos, Alajuela Código 21006, Costa Rica
Melissa Ramírez Rojas
Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Carlos Aguilar-Avendaño
Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Ezequías Maynes
Programa Nacional de Manejo Integrado de Vectores, Región Huetar Caribe, Ministerio de Salud, Sixaola, Talamanca, Limon Código 70402, Costa Rica
José A. Valerín Cordero
Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Pacífico Central, Ministerio de Salud, Puntarenas, Puntarenas Código 60101, Costa Rica
Alonso Soto Mora
Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Brunca, Ministerio de Salud, San Isidro del General, Pérez Zeledón, San Jose Código 11901, Costa Rica
Chystrie A. Rigg
Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panama Apartado Postal 0816-02593, Panama
Aryana Zardkoohi
Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Monica Prado
Unidad de Investigación en Plasmodium, Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San Jose Apartado Postal 11501-2060, Costa Rica
Mariel D. Friberg
Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20740, USA
Luke R. Bergmann
Department of Geography, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Rodrigo Marín Rodríguez
Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
Gabriel L. Hamer
Department of Entomology, Texas A&M University, College Station, TX 77843, USA
Luis Fernando Chaves
Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica
In the absence of entomological information, tools for predicting Anopheles spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus at the presumed epicenter of malaria transmission during 2018–2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.