Department of Chemistry, CMS—Centre for Molecular Simulation, IQST—Institute for Quantum Science and Technology and ISEEE—Institute for Sustainable Energy, Environment and Economy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
Sergei Yu. Noskov
Department of Biological Science and CMS—Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
Bogdan Lev
School of Applied Sciences and Health Innovation Research Institute, RMIT University, Melbourne, VIC 3001, Australia
Rui Zhang
Department of Chemistry, CMS—Centre for Molecular Simulation, IQST—Institute for Quantum Science and Technology and ISEEE—Institute for Sustainable Energy, Environment and Economy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
Van Ngo
Department of Biological Science and CMS—Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
Annick Goursot
Institut Charles Gerhardt, UMR 5253 CNRS/UM2/ENSCM/UM1, 8 rue de l'Ecole Normale, Montpellier 34296, France
Patrizia Calaminici
Departamento de Química, CINVESTAV, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, México D.F. 07000, Mexico
Andreas M. Köster
Departamento de Química, CINVESTAV, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, México D.F. 07000, Mexico
Aurelio Alvarez-Ibarra
Departamento de Química, CINVESTAV, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, México D.F. 07000, Mexico
Daniel Mejía-Rodríguez
Departamento de Química, CINVESTAV, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, México D.F. 07000, Mexico
Jan Řezáč
Institute of Organic Chemistry and Biochemistry and Gilead Science and IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
Fabien Cailliez
Laboratoire de Chimie Physique—CNRS UMR 8000, Université Paris-Sud, Bật. 349, Campus d'Orsay. 15, rue Jean Perrin, Orsay Cedex 91405, France
Aurélien de la Lande
Laboratoire de Chimie Physique—CNRS UMR 8000, Université Paris-Sud, Bật. 349, Campus d'Orsay. 15, rue Jean Perrin, Orsay Cedex 91405, France
The density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the basic features of deMon2k that make it efficient while retaining accuracy, three QM/MM implementations are compared and contrasted. In the first, deMon2k is interfaced with the CHARMM MM code (CHARMM-deMon2k); in the second MM is coded directly within the deMon2k software; and in the third the Chemistry in Ruby (Cuby) wrapper is used to drive the calculations. Cuby is also used in the context of constrained-DFT/MM calculations. Each of these implementations is described briefly; pros and cons are discussed and a few recent applications are described briefly. Applications include solvated ions and biomolecules, polyglutamine peptides important in polyQ neurodegenerative diseases, copper monooxygenases and ultra-rapid electron transfer in cryptochromes.