Microbiology Spectrum (Oct 2023)

The loss of microbial autotoxin degradation functions is associated with the decline of beneficial bacterial agents induced by phenolic acids

  • Baoying Wang,
  • Yulan Lin,
  • Wenhao Yu,
  • Qing Xia,
  • Ahmad Ali,
  • Fugang Wei,
  • Chuanchao Dai,
  • Jinbo Zhang,
  • Zucong Cai,
  • Jun Zhao

DOI
https://doi.org/10.1128/spectrum.03380-22
Journal volume & issue
Vol. 11, no. 5

Abstract

Read online

ABSTRACT Continuous cultivation of medicinal plants can disrupt the rhizosphere’s microbial community. There is still a need to know about the beneficial bacterial community, their putative drivers, and the potential functions they may have. This study used different growth years of Sanqi ginseng (Panax notoginseng) with root rot to look at the beneficial microbial community structure, the function of microbial carbon source utilization, and the function of rhizosphere soil metabolism. The beneficial bacterial community changed and the relative abundance of beneficial agents was suppressed significantly with the successive Sanqi ginseng plantings. The carbon source utilization capacity and diversity increased significantly, whereas three autotoxin degradation-related pathways (biosynthesis of other secondary metabolites, metabolism of terpenoids and polyketides, and xenobiotics biodegradation and metabolism) were downregulated considerably with planting year extended. The changes in the beneficial agents were driven by the shifts in phenolic acid profiles, and the decline of beneficial microbes led to the loss of microbial autotoxin degradation functions. Overall, these results provide insight into beneficial microbes, microbial functions, phenolic acids, and their interactions, and these findings are essential for maintaining healthy and sustainable cultivation of Sanqi ginseng. IMPORTANCE Sanqi ginseng is a valuable perennial Chinese herb with various benefits for human health. However, continuous cultivation causes a high incidence of root rot disease, which leads to decreased yield and serious economic losses and ultimately impedes the sustainable development of Chinese medicine production. The significance of this study is to reveal the pattern of changes in beneficial bacteria and their related functions in root rot diseased rhizosphere with the successive planting years of Sanqi ginseng. This study found that the decline of beneficial bacterial agents mediated by phenolic acid profiles appears to be associated with the loss of microbial autotoxin degradation functions. This result may have new implications for deciphering the causes of Sanqi ginseng’s continuous cropping obstacles.

Keywords