PLoS ONE (Jan 2018)

Comparison of non-invasive assessment of liver fibrosis in patients with alpha1-antitrypsin deficiency using magnetic resonance elastography (MRE), acoustic radiation force impulse (ARFI) Quantification, and 2D-shear wave elastography (2D-SWE).

  • Rolf Reiter,
  • Martin Wetzel,
  • Karim Hamesch,
  • Pavel Strnad,
  • Patrick Asbach,
  • Matthias Haas,
  • Britta Siegmund,
  • Christian Trautwein,
  • Bernd Hamm,
  • Dieter Klatt,
  • Jürgen Braun,
  • Ingolf Sack,
  • Heiko Tzschätzsch

DOI
https://doi.org/10.1371/journal.pone.0196486
Journal volume & issue
Vol. 13, no. 4
p. e0196486

Abstract

Read online

Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis.Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE.A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE.The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.