Journal of Dairy Science (Nov 2023)

Dynamics of microbial communities associated with flavor formation during sour juice fermentation and the milk fan drying process

  • Chen Chen,
  • Wenqian Yao,
  • Haiyan Yu,
  • Haibin Yuan,
  • Wei Guo,
  • Ke Huang,
  • Huaixiang Tian

Journal volume & issue
Vol. 106, no. 11
pp. 7432 – 7446

Abstract

Read online

ABSTRACT: Milk fan is an acid-curd cheese with strong national characteristics (a traditional dairy product of the Bai nationality with a shape like a piece of paper) and a long history in Yunnan province, China. In our previous study, we characterized the microbial community diversity of milk fan, but the succession of microorganisms associated with flavor formation in milk fan is still unknown. Therefore, we examined the predominant microorganisms and their correlations with the formation of flavor in the fermentation of sour juice and drying of milk fan by gas chromatography mass spectrometry, high-throughput 16S rDNA sequencing, intergenic spacer sequencing and metatranscriptome analysis. We found that the relative abundances of Lactobacillus and Issatchenkia initially decreased and then increased with time during the fermentation of sour juice. However, the relative abundances of Acetobacter, Leuconostoc, Lactococcus, Geotrichum, and Dipodascus initially increased and then decreased. During the drying step, the relative abundances of Lactobacillus and Issatchenkia continuously increased and became the dominant microorganisms in the milk fan. The metatranscriptomes generated from the milk fan showed that “carbohydrate metabolism,” “translation,” and “signal transduction” were the main metabolic functions of the microbial communities. Rhodotorula and Yarrowia contained more differentially expressed genes than other genera, which indicated they may be associated with the production of the characteristic flavor. Furthermore, a Pearson correlation analysis showed that Lactococcus, Rhodotorula, Candida, Cutaneotrichosporon, and Yarrowia were significantly positively correlated with more aroma-active compounds, mainly ethyl acetate, 2-heptanone, isovaleraldehyde, butyric acid, nonanal, and hexanal. In conclusion, these findings contribute to a better understanding of the flavor production mechanism during the production of milk fan.

Keywords